
2 (a) A student uses this apparatus to investigate electromagnetic induction.

When the S pole of the magnet is moved into the coil, the pointer on the sensitive ammeter moves to the left.

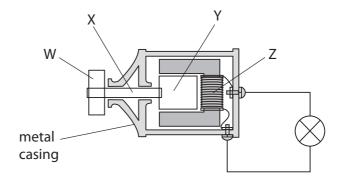
Describe two ways that the student can make the pointer move to the right.

(2)

reverse the magnet

2 reverse the coil

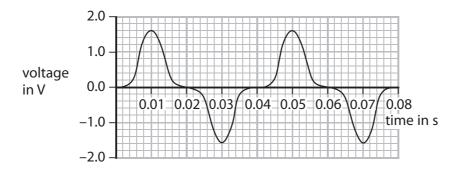
Key


W

(b) The student has a bicycle with a dynamo (generator) that supplies electricity for its lights. The diagram shows the dynamo.

The friction wheel, W, presses against the bicycle tyre. When the student pedals, the friction wheel turns and causes part Y to rotate.

friction wheel
axle



(i) Complete the key for the diagram by giving the names of parts Y and Z.

(2)

(ii) The graph shows how the output voltage of the dynamo varies with time as the student pedals steadily.

State the maximum output voltage of the dynamo.

(1)

(iii) Calculate the frequency of the output voltage.

(2)

$$f = 1/T = 1 / 0.04 = 25Hz$$

(iv) Which row of the table is correct when the friction wheel turns faster?

(1)

	Output voltage is	Frequency of output voltage is
	lower	lower
	higher	lower
⋉ C	higher	higher
⊠ D	lower	higher

		ging the speed of the friction wheel, suggest how the output rnamo can be increased.	(1)
use	a stronger	magnet	(1)
(c)	The student cycles for	or 290 s.	
	Her dynamo produc 72% efficient.	es a constant useful power output of 3.1 W and is	
	(i) Calculate the tot	al useful energy output.	(3)
	E = P * t =	= 3.1 * 290 = 899 = 900J	(-)
		useful energy output =	1
	(ii) State the relation	nship between efficiency, useful energy output and total	
	energy input.	7, 3, 1	(1)
	efficiency	= useful E out / total E in	
	(iii) Calculate the tot	al energy input.	(2)
	F	t / -ffision-re 000/072 42501	(3)
	E In = E ou	t / efficiency = 900/0.72 = 1250J	
		total energy input =	J
		(Total for Question 2 = 16 ma	rks)

3 A solenoid is held in a vertical position. The solenoid is connected to a sensitive, centre-zero ammeter.

A vertical bar magnet is held stationary at position X just above the upper end of the solenoid as shown in Fig. 10.1.

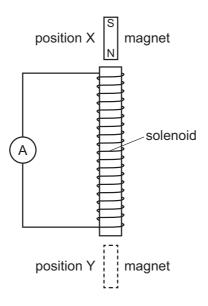
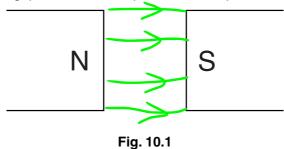


Fig. 10.1

The magnet is released and it falls through the solenoid. During the initial stage of the fall, the sensitive ammeter shows a small deflection to the left.

(a) E	zxpla	aın	why	the	amme	ter s	shows	а	defle	ection.	
----	-----	-------	-----	-----	-----	------	-------	-------	---	-------	---------	--

the magnetic field lines cut through the solenoid coils causing a current to flow.


(b) The magnet passes the middle point of the solenoid and continues to fall. It reaches position Y.

Describe and explain what is observed on the ammeter as the magnet falls from the middle point of the solenoid to position Y.

the direction of the current changes because the magnet is now leaving the coil and since	
the magnet is speeding up the size of the	
current increases.	
	[4]

oparatus that would increase the initial deflection of the	(c) Suggest two changes t ammeter.					
net	a stronger					
drop the magnet from a greater height						
[2]						
[Total: 7]						

5 (a) Fig. 10.1 shows the gap between the N-pole and the S-pole of a magnet.

The magnetic field in the gap is uniform.

On Fig. 10.1, draw four field lines to show the pattern and direction of the magnetic field in the gap.

(b) Fig. 10.2 shows a horizontal copper wire PQ between two opposite magnetic poles.

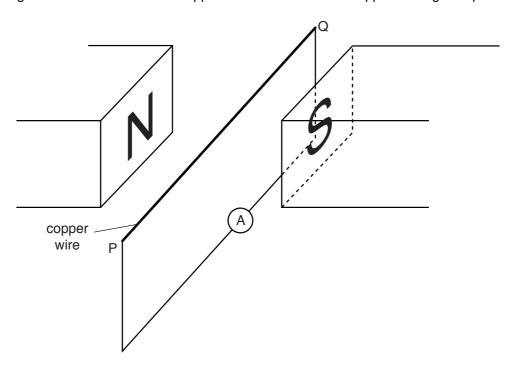


Fig. 10.2

A circuit is made by connecting a sensitive digital ammeter between P and Q. The wire PQ is then moved vertically downwards.

(i)	State and explain what is observed on the ammeter.	
n	The ammeter will deflect because the noving wire cuts through the magnetic ield lines causing an emf to be induced ausing a current to flow.	I
		[3]
(ii)	State what is observed on the ammeter when PQ is moved 1. vertically downwards at a greater speed,	
	a larger current flows	[1]
	2. vertically upwards at the same speed as in 1.	
	the current is the same size but in the opposite direction.	[1]
	the opposite un ection.	[Total: 7]